

Efficient Data Prefetching Approach for PC-Cluster based Cloud Storage
System

Tin Tin Yee
University of Computer Studies, Yangon

tintinyee.tty@gmail.com

Thinn Thu Naing
University of Computer Studies, Yangon

thinnthu@gmail.com

Abstract

 Cloud storage system architecture and design plays

a vital role in the cloud computing infrastructure in
order to improve the storage capacity as well as cost
effectiveness. To address this need, the cost effective PC
cluster based storage server is configured to be
activated for large amount of data to provide cloud
users and is implemented with Hadoop Distributed File
System (HDFS). HDFS is open source distributed file
system that designed on low cost hardware. In this
system, high access latency occurs due to the access
mechanism of HDFS. Data prefetching is an effective
technique for improving file access performance which
can reduce response time delay for I/O system. In order
to solve this issue, we propose data perfetching
algorithm based on FP-growth algorithm to extract user
access patterns from user’s historical accesses records
for reducing the communications between clients and
NameNode. According to user’s access frequent
patterns, frequently access data are stored in client
cache.

Keywords: Cloud Computing, Cloud storage, Data
Prefetching

1. Introduction

 Cloud computing is a consequence of economic,
commercial, cultural and technologies conditions that
have combined to cause a disruptive shift in information
technology towards a service-based economy. Cloud
computing offers more opportunity to creative and
ambitious people by lowering up-front costs to start new
businesses. Many cloud computing service providers
have been continuously made efforts to cut down
expenses of system maintenance by developing energy-
efficient and cost-effective infrastructure and platform
software. In addition to the technologies reducing the
maintenance costs, it is necessary to reduce a significant
up-front investment to build the cloud computing
service. Cloud computing applications require scalable,
elastic and fault tolerant storage system.
 The storage demands of cloud computing have been
growing exponentially year after year. Rather than
relying on traditional central large storage arrays, the
storage system for cloud computing consolidates large
numbers of distributed commodity computers into a
single storage pool, and provides a large capacity and
high performance storage service in an unreliable and
dynamic network environment at low cost. To build

such a cloud storage system, an increasing number of
companies and academic institutions have started to rely
on the Hadoop Distributed File System (HDFS). HDFS
provides reliable storage and high throughput access to
application data. It is suitable for applications that have
large data sets, typically the Map/Reduce programming
framework for data-intensive computing. HDFS has
been widely used and become a common storage
appliance for cloud computing.
 The rest of this paper is organized as follows.
Section 2 describes background and related work. In
section 3 discusses PC cluster based cloud storage
system architecture. In section 4 describes proposed data
prefetching algorithm and evaluation of the proposed
architecture presents in section 5. Finally, section 6 is
the conclusions.

2. Background and Related Works

PC-cluster based cloud storage system is designed
for reliably storing very large files across distributed
commodity machine in a large cluster [7]. It stores each
file as a sequence of block; default block size is 64MB
and all blocks in a file are the same size except the last
one. The blocks of a file are replicated for high
availability and fault tolerance. The replication policy is
random replica placement policy that replicas of a block
are placed at random on any of the machines in the
entire cluster. The default replica factor for single data
block is three.

Young el al. [8] presented an intelligent prefetching
technique that significantly improves hybrid- flash-disk
storage which is a combination of hard disk and flash
memory. They proposed two-level prefetching
technique and it considered both file level and block
level prefetching. This algorithm has good performance
on disk perfetching. However, it doesn’t have a high
efficiency at prefetching data in cloud environment.
Yong el al. [1] proposed an Algorithm-level Feedback-
controlled Adaptive (AFA) to address data access delay.

Lin el al. [6] proposed an Affinity-based Metadata
Prefetching scheme to provide aggressive metadata
Prefetching. Heung el al. [5] proposed the Double
Predication-by-Partial-Match Scheme (DPS) that can be
used under modern web framework and proposed the
Adaptive Rate Controller (ARC) to determine the
prefetch rate depending on the memory status
dynamically.

James el al. [2] presented graph techniques for
prefetching to reduce file system latency. They create a
graph with nodes as files in the file system and edges to

represent the access sequence between nodes. Peng el al.
[3] proposed a weighted graph based prefetching
algorithm for metadata servers in petabyte-scale storage
systems. In this approach, relationship graphs are
constructed dynamically by defining successor
relationships.

Jiazheng el al. [4] proposed a Real-time Data
Prefetching algorithm based on sequential pattern
mining to hidden the data access delay. This has a good
performance under a reasonable prefetching size
threshold. They showed that this algorithm has a high
hit rate with low prefetching rate but the increased
network communication is little. The proposed
algorithm directly prefetching data objects from remote
data nodes to local data nodes cache space and hasn’t
consider the replacement and consistency strategy.

3. PC-Cluster based Cloud Storage System
Architecture

 In this section describes physical topology of PC-
cluster based cloud storage system. The system
architecture is shown in figure 1. The overall framework
of PC-cluster based cloud storage system consists of
three layers that are web based application services
layer, Hadoop Distributed File System (HDFS) layer
and PC cluster layer.
 The web based application service layer provides
interface for the users whose can store and access their
own applications such Virtual Machine (VM) images,
data files and multimedia data, etc. The HDFS layer
supports the file system for PC cluster layer. HDFS is as
a user-level file system in cluster which exploits the
native file system on each node to store and access data.
The input data are divided into blocks, typically 64 MB
and each block is stored as a separate file in the local
file system. HDFS is implemented by two services: the
NameNode and DataNode. The NameNode is
responsible for maintaining the HDFS directory tree,
and is a centralized service in the cluster operating on a
single node. Clients contact the NameNode in order to
perform common file system operations, such as open,
close, rename, and delete. The NameNode does not store
HDFS data itself, but rather maintains a mapping
between HDFS file name, a list of blocks in the file and
the DataNode(s) on which those blocks are stored. The
PC cluster layer provides to store large amount of data.

This layer tries to transfer from the cluster computing to
storage system and uses inexpensive PC components.
The large files can be stored by striping the data across
multiple nodes. In PC cluster layer consists of one
NameNode and many DataNodes. It uses HDFS
(Hadoop Distributed File System) to store and access
data in the collection of the nodes. Each node has its
own memory, I/O devices and operating system. The
nodes are physically separated and connected via a
LAN.

Figure 1: PC-Cluster based Cloud Storage System

Architecture

4. Proposed Algorithm for Data Prefetching

 In this section presents proposed data access
operation of PC-cluster based cloud storage system and
proposed algorithm to improve access performance of
this storage system. Prefetching is an effective approach
for improving data access performance which can
reduce access latency for I/O systems. In the cloud
storage system, prefetching for user frequently access
files is critical for the overall system performance. In
this paper presents data perfetching algorithm based on
FP-growth algorithm to extract user access patterns from
user’s historical access log records.

4.1. Proposed Data access operation of PC-
cluster based Cloud Storage System

 When cloud users read file from PC-cluster based
storage server, they first interact with NameNode for file
metadata and then perform actual I/O operations directly
with relevant DataNodes to retrieve data. High access
latencies occur due to the access mechanism of HDFS.
Firstly, users need to query NameNode for file metadata
which happens once for each file access. Secondly,
sequential files are not placed sequentially in block
level, or even are placed on different DataNodes
although its own data placement strategy. Finally, HDFS
currently doesn’t provide prefetching function to hide
I/O latency. In this case, response time delay caused by
reading from NameNode that is the major performance
bottleneck of processing user request.

To solve the performance bottleneck, in this paper
proposes prefetching and caching function using FP-
growth algorithm to extract user access patterns from
user’s historical accesses records for reducing the
communications between clients and NameNode and
frequently access data are stored in client cache using
Least Recently Used (LRU) replacement policy to

…

 PC Cluster Layer

DataNode1

Hadoop Distributed File System (HDFS) Layer
NameNode

DataNoden

Web based Application Service Layer

VM Image Data File Multimedia
Data …

DataNode2

improve performance of PC-cluster
for cloud storage.

Figure 2: Proposed data access operation

The proposed data access operati
based cloud storage system is shown in figure 2.
operation, Users frequently access data are
from NameNode’s historical access
FP- growth algorithm. According to user’s access
frequent patterns, frequently access data are stored on
client cache using Least-Recently
replacement Policy.

In LRU, every data in cache has a time
assigned when inserted or when found in cache. It
selects candidates for removal at cache finding the
oldest files in the cache using the time
the cache with the data.

4.2. Proposed Data Prefetching algorithm

 In this section describes proposed prefetching
algorithm and defines definitions as follows:
Definition 1: Dcache represents user request data exist in
client cache.

Definition 2: Dno-cache represents user request data
doesn’t exist in client cache.

Definition 3: Accesslog represents historical
log records.
 Let m ={m1, m2,..., mi} be a set of items
access log, and a transaction in access log file M={M
M2,...,Mn}, where n is the total number of historical
access log. The support (or occurrence frequency) of a
pattern A, where A is a set of items, is the number of
transactions containing A in access log
frequent if A’s support is no less than a
minimum support threshold, ξ. Table 1 and 2 list the
summary of notations used in the algorithms.

Table 1. Notations Used in the FP

Notation Description
M The set of access log
ξ The predefined minimum support

threshold
m The set of frequent items
L The list of frequent items

cluster based storage server

Proposed data access operation
The proposed data access operation of PC-cluster

based cloud storage system is shown in figure 2. In this
Users frequently access data are prefetched

from NameNode’s historical access log records using
According to user’s access

access data are stored on
Recently-Used (LRU)

in cache has a time-stamp
assigned when inserted or when found in cache. It
selects candidates for removal at cache finding the

files in the cache using the time-stamp stored in

Prefetching algorithm

proposed prefetching
definitions as follows:

represents user request data exist in

represents user request data

historical user access

} be a set of items in historical
in access log file M={M1,

n is the total number of historical
(or occurrence frequency) of a

pattern A, where A is a set of items, is the number of
access log. The pattern A is

frequent if A’s support is no less than a predefined
Table 1 and 2 list the

summary of notations used in the algorithms.
Table 1. Notations Used in the FP-tree Algorithm

access log
The predefined minimum support

The set of frequent items
The list of frequent items

p The first element of sorted
frequent-item list

P The remaining

Table 2. Notations Used in the FP
Algorithm

Notation
P The single pre

of Tree
β The combination of the

nodes in the path P
 The itemset in the

Begin
1. Scan the M.

 2. Collect m, the set of frequent items, and
 the support of each frequent item.
 3. Sort m in support-descending order as
 the list of frequent items.
 4. Create the root of an FP

it as “null”.
 5. For each transaction Trans in
 begin
 6. Select the frequent items in
 7. Sort them according to the order of
 end
 8. [p |P] select from Sorted frequent
 9. Call insert_tree([p | P

End

Algorithm 2: FP-tree Algorithm

Algorithm 1: Data Prefetching

Begin
1. Let user request be
2. Let client cache be
3. for user request R

access operation process
4. if R in Dcache then
5. Return user request
6. end if
7. else
8. Call prefetching module(Access
9. Return user request
10. Store R in C with LRU replacement

policy
11. end for

End

Begin
1. Find user frequently access patterns

from Accesslog
FP-growth algorithm

2. Fetch data from DataNodes

End

Procedure prefetching module

first element of sorted
item list

he remaining frequent-item list

Table 2. Notations Used in the FP-growth
Algorithm

Description
The single prefix-path part
of Tree
The combination of the
nodes in the path P
The itemset in the access

2. Collect m, the set of frequent items, and
the support of each frequent item.

descending order as L,
the list of frequent items.

4. Create the root of an FP-tree, T, and label

For each transaction Trans in M do

6. Select the frequent items in M
7. Sort them according to the order of L.

] select from Sorted frequent-item list
P], T).

Algorithm

Algorithm 1: Data Prefetching Algorithm

be R
be C
 arrive in data

access operation process do
then

user request R

prefetching module(Accesslog)
user request R

Store R in C with LRU replacement

Find user frequently access patterns
 using FP-tree and

growth algorithm
Fetch data from DataNodes

Procedure prefetching module (Accesslog)

log records
ai A frequent item in the tree

5. Performance Evaluations

 In this section presents theoretical analysis of both
original data access operation and proposed data access
operation. Assume that there are N files in the PC-
cluster based cloud storage system, whose lengths are
denoted as L1,L2,…Ln.

Definition 4: When access data from PC-cluster based
cloud storage system using original data access
operation, the access operation is
composed of following steps:
Step1. User send a read request to NameNode.
Step2. NameNode looks up the metadata of request
files.
Step3. The metadata is returned to user.
Step4. User sends a read operation to a relevant
DataNode.
Step5. DataNode fetches the requested block from disk .
Step6. Data block is returned to user.

Analysis: Assume that step 1 and 4 are constant time
� because they are consumed by sending commands and
step 3 is assumed that constant time � because the size
of metadata is very small. Step 2 is β times because
NameNode need to look up once for each file access.
Step 5 is α times where M stands for the number of
blocks. DataNodes fetches the total number of blocks

for read request. Step 6 is �����	

�

��

�
 times which

depend on length of files � and network transmission
speed �����. The total access time ��������
�� is
defined as

��������
��
 �3 � �� � ∑ �

!"# � ∑ $%
!"# �

 ∑ �����	

%
!"# (1)

Definition 5: When access data from PC-cluster based
cloud storage system using proposed data access
operation, the access operation has two cases.
Case 1: User request data exist in Client cache, the
access operation is composed of following steps:
Step1. User sends a read request to Client cache.
Step2. Client cache looks up the data of request files.
Step3. The data is returned to user.

Analysis: Assume that step 1 is constant time � because
it is consumed by sending commands. Step 2 is ∑ �

!"# .

Step 3 is �����	

�

��

�
 times.

The total access time ����
��_���'
 is defined as

����
��_���'

 � � ∑ �

!"# �

 ∑ �����	
%
!"# �2�

Case 2: User request data doesn’t exist in Client cache,
the access operation is processed as following:
Step1. User sends a read request to Client cache.
Step2. Client cache looks up the data of request files.
Step3. User request data doesn’t exist in Client cache,
prefetching module find user frequently access patterns
from Accesslog.
Step4. Data block is returned to user and client cache.

Analysis: Assume that step 1 is constant time � because
it is consumed by sending commands. Step 2 is ∑ �

!"# .
Step 3 is)*�+��,-.!/

 0 ∑ $%

!"# which find user
frequently access pattern and fetch request data from

relevant DataNode. Step 4 is �����	

�

��

�
 times

which depend on length of files � and network
transmission speed �����. The total access time
��1
2
.�'_���
�� is defined as

��1
2
.�'_���
��
 � � ∑ �

!"# �

)*�+��,-.!/
 �
 ∑ �����	

%
!"# �3�

 In numerical analysis, we assume that � = 0.128ms,
� = 5 ms, α = 5 ms and �����	= 0.64ms. The results

Begin
1. if (Tree contains a single path P)
2. then for each combination of the

nodes � in the path P
3. generate pattern � 3 $ with support

= minimum support of nodes in �
4. else if for each ai in the header of

Tree{
5. generate pattern � = ai 3 $ with

support = ai.support
6. contruct �4s conditional pattern base
7. then �4� conditional FP_tree

Tree �
8. if Tree � 5 6 then
9.
10. end if
11. end if
12. end if

End

Algorithm 3: FP-growth Algorithm

Procedure insert_tree([p | P], T)

Begin
1. if (T has a child N and item-name =

 p.item-name)
2. then increment N’s count by 1;
3. else create a new node N, with its

count
4. initialized to 1,its parent link to T

 end if
End

of numerical analysis are shown in figure 3. According
to the results, in the proposed approach, data access time
is depending on client cache. Therefore, the proposed
algorithm is more accuracy increase as well as the data
access time is also fast.

Figure 3: Numerical analysis of proposed methods

6. Conclusions

 In this paper proposed data prefetching and caching
function using FP-growth algorithm to extract user
access patterns from user’s historical accesses records
for reducing the communications between clients and
NameNode and frequently access data are stored in
client cache using Least Recently Used (LRU)
replacement policy to improve performance of PC-
cluster based storage server for cloud storage.
According to performance evaluation, the access
performance is improved when more frequently user
access data are stored in client cache but cache storage
space will be large and more time consuming process.
As future works, we plan to investigate more effective
solutions to detect and predict data prefetching method
for improve I/O performance of PC-cluster based cloud
storage system.

References

[1] C.Yong, Z. Huaiyu and S.Xina-He, “An Adaptive Data
Prefetcher for High-Performance Proccessors”, In Proceedings
of the Tenth IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, 2002, pages 155-164.
[2] G. James and A. KY Randy, “Reducing File System
Latency using a Predictive Approach”, In Proceedings of the
USENIX Summer Technical Conference, 1994.
[3]G. Peng, W.Jung, Z.Yifeng, J.Hong and S.Pengju, “Nexus:
A Novel Weight-Graph-Based Prefetching Algorithm for
Metadata Servers in Petabyte-Scale Storage Systems”, In

Proceedings of Sixth IEEE International Symposium on
Cluster computing and the Grid, 2006.
[4] L.Jiazheng, W.Shaochun, G. Yunwen and Y.Bowen “Real-
Time Data Prefetching Algorithm based on Sequential Pattern
Mining in Cloud Environment”, In Proceedings of American
Journal of Engineering and Technology Research, Volume 11,
No.9, 2011.
[5]L.Heung Ki, A. Baik Song and K. Eun Jung “Adaptive
Prefetching Scheme Using Web Log Mining in Cluster based
Web Systerms”. In Proceedings of IEEE International
Conference on Web Services, 2009.
[6] L.Lin, L.Xuemin, J.Hong, Z.Yifeng, “ AMP: An Affinity-
based Metadata Prefetching Scheme in Large-Scale
Distributed Storage Systems”, Technical Report, Novermber,
2007.
[7] Y. Tin Tin, N. Thinn Thu, “PC-Cluster based Storage
System Architecture for Cloud Storage”, International Journal
on Cloud Computing: Services and Architecture
(IJCCSA),Vol.1, No.3, November, 2011.
[8]Y.Un-Keun, K.Han-Joon and C.Jae-Young, “Intelligent
Data Prefetching for Hybrid Flash-Disk Storage Using
Sequential Pattern Mining Technique”, In Proceedings of
IEEE/ ACIS Ninth International on Computer and Information
Science, 2006

0

10

20

30

40

50

60

60 120 250 320 500

Original

Proposed
approach
(not cache)

Proposed
approach
(cache)

File Size (MB)

A
cc

es
s

T
im

e
(m

s)

